Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.389
Filtrar
1.
Org Lett ; 26(10): 2034-2038, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486497

RESUMO

Tuberculosis (TB) is one of the most dreadful diseases, killing more than 3 million humans annually. M. tuberculosis (MTb) is the causative agent for TB and has a thick and waxy cell wall, making it an attractive target for immunological studies. In this study, a heptamannopyranoside containing 1 → 2 and 1 → 6 α-mannopyranosidic linkages has been explored for the immunological evaluations. The conjugation-ready heptamannopyranoside was synthesized by exploiting the salient features of recently discovered [Au]/[Ag]-glycosidation of ethynylcyclohexyl glycosyl carbonate donors. The glycan was conjugated to the ESAT6, an early secreted protein of MTb for further characterization as a potential subunit vaccine candidate.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/metabolismo , Carbonatos , Catálise
2.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397085

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a global health crisis with substantial morbidity and mortality rates. Type II alveolar epithelial cells (AEC-II) play a critical role in the pulmonary immune response against Mtb infection by secreting effector molecules such as antimicrobial peptides (AMPs). Here, human ß-defensin 1 (hBD1), an important AMP produced by AEC-II, has been demonstrated to exert potent anti-tuberculosis activity. HBD1 overexpression effectively inhibited Mtb proliferation in AEC-II, while mice lacking hBD1 exhibited susceptibility to Mtb and increased lung tissue inflammation. Mechanistically, in A549 cells infected with Mtb, STAT1 negatively regulated hBD1 transcription, while CEBPB was the primary transcription factor upregulating hBD1 expression. Furthermore, we revealed that the ERK1/2 signaling pathway activated by Mtb infection led to CEBPB phosphorylation and nuclear translocation, which subsequently promoted hBD1 expression. Our findings suggest that the ERK1/2-CEBPB-hBD1 regulatory axis can be a potential therapeutic target for anti-tuberculosis therapy aimed at enhancing the immune response of AEC-II cells.


Assuntos
Mycobacterium tuberculosis , Tuberculose , beta-Defensinas , Animais , Humanos , Camundongos , Células Epiteliais Alveolares , beta-Defensinas/genética , beta-Defensinas/farmacologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Células Epiteliais , Sistema de Sinalização das MAP Quinases , Tuberculose/metabolismo
3.
J Immunol ; 212(5): 765-770, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38251918

RESUMO

AIM2 (absent in melanoma 2), an inflammasome component, mediates IL-1ß release in murine macrophages and cell lines. AIM2 and IL-1ß contribute to murine control of Mycobacterium tuberculosis (M.tb) infection, but AIM2's impact in human macrophages, the primary niche for M.tb, remains unclear. We show that M.tb, Mycobacterium bovis bacillus Calmette-Guérin (BCG), and M. smegmatis induce AIM2 expression in primary human macrophages. M.tb-induced AIM2 expression is peroxisome proliferator-activated receptor γ (PPARγ)-dependent and M.tb ESX-1-independent, whereas BCG- and M. smegmatis-induced AIM2 expression is PPARγ-independent. PPARγ and NLRP3, but not AIM2, are important for IL-1ß release in response to M.tb, and NLRP3 colocalizes with M.tb. This is in contrast to the role for AIM2 in inflammasome activation in mice and peritoneal macrophages. Altogether, we show that mycobacteria induce AIM2 expression in primary human macrophages, but AIM2 does not contribute to IL-1ß release during M.tb infection, providing further evidence that AIM2 expression and function are regulated in a cell- and/or species-specific manner.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , PPAR gama/metabolismo , Tuberculose/metabolismo
4.
Front Immunol ; 14: 1254347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928531

RESUMO

Exosomes as double-membrane vesicles contain various contents of lipids, proteins, mRNAs and non-coding RNAs, and involve in multiple physiological processes, for instance intercellular communication and immunomodulation. Currently, numerous studies found that the components of exosomal proteins, nucleic acids or lipids released from host cells are altered following infection with Mycobacterium tuberculosis. Exosomal contents provide excellent biomarkers for the auxiliary diagnosis, efficacy evaluation, and prognosis of tuberculosis. This study aimed to review the current literatures detailing the functions of exosomes in the procedure of M. tuberculosis infection, and determine the potential values of exosomes as biomarkers to assist in the diagnosis and monitoring of tuberculosis.


Assuntos
Exossomos , Mycobacterium tuberculosis , Tuberculose , Humanos , Exossomos/metabolismo , Biomarcadores/metabolismo , Comunicação Celular , Tuberculose/diagnóstico , Tuberculose/metabolismo , Lipídeos
5.
mBio ; 14(5): e0094323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37676004

RESUMO

IMPORTANCE: Tuberculosis still remains a global burden and is one of the top infectious diseases from a single pathogen. Mycobacterium tuberculosis, the causative agent, has perfected many ways to replicate and persist within its host. While mycobacteria induce vacuole damage to evade the toxic environment and eventually escape into the cytosol, the host recruits repair machineries to restore the MCV membrane. However, how lipids are delivered for membrane repair is poorly understood. Using advanced fluorescence imaging and volumetric correlative approaches, we demonstrate that this involves the recruitment of the endoplasmic reticulum (ER)-Golgi lipid transfer protein OSBP8 in the Dictyostelium discoideum/Mycobacterium marinum system. Strikingly, depletion of OSBP8 affects lysosomal function accelerating mycobacterial growth. This indicates that an ER-dependent repair pathway constitutes a host defense mechanism against intracellular pathogens such as M. tuberculosis.


Assuntos
Dictyostelium , Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculose , Humanos , Vacúolos/metabolismo , Dictyostelium/microbiologia , Retículo Endoplasmático , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/metabolismo
6.
J Innate Immun ; 15(1): 751-764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37734337

RESUMO

Epigenetic reprogramming of innate immune cells by ß-glucan in a process called trained immunity leads to an enhanced host response to a secondary infection. ß-Glucans are structural components of plants, algae, fungi, and bacteria and thus recognized as non-self by human macrophages. We selected the ß-glucan curdlan from Alcaligenes faecalis, WGP dispersible from Saccharomyces cerevisiae, and ß-glucan-rich culture supernatant of Alternaria and investigated whether they could produce trained immunity effects leading to an increased control of virulent Mycobacterium tuberculosis. We observed a significant M. tuberculosis growth reduction in macrophages trained with curdlan and Alternaria, which also correlated with increased IL-6 and IL-1ß release. WGP dispersible-trained macrophages were stratified into "non-responders" and "responders," according to their ability to control M. tuberculosis, with "responders" producing higher IL-6 levels. The addition of neutrophils to infected macrophage cultures further enhanced macrophage control of virulent M. tuberculosis, but not in a stimuli-dependent manner. Pathway enrichment analysis of DNA methylome data also highlighted hypomethylation of genes in pathways associated with signaling and cellular reorganization and motility, and "responders" to WGP training were enriched in the interferon-gamma signaling pathway. This study adds evidence that certain ß-glucans show promise as immune-training agents.


Assuntos
Mycobacterium tuberculosis , Tuberculose , beta-Glucanas , Humanos , Projetos Piloto , Interleucina-6/metabolismo , Macrófagos , beta-Glucanas/metabolismo , Imunidade Inata , Saccharomyces cerevisiae/metabolismo , Tuberculose/metabolismo
7.
J Cell Biochem ; 124(9): 1423-1434, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37642132

RESUMO

Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and is still one of the global health burdens. The occurrence of various cases and multidrug resistance confirm that TB has not been completely conquered. For these reasons, the present research has been conducted to explore TB vaccine and drug candidate possibility using Mtb-secreted proteins. Among these proteins, MPT32 is known to have antigenicity and immunogenicity. There has not been a report on the host immune responses and regulation in macrophage cells. The present study was conducted with MPT32 in RAW 264.7 murine macrophage cells that control immune responses by sensing pathogen invasion and environmental change. We have found that MPT32 could activate lipopolysaccharide (LPS)-induced gene expression of metalloproteinase-9 (MMP-9) and inflammation in RAW 264.7 cells. After treating cells with MPT32, the increase in pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß (IL-1ß) and IL-6, was observed. In addition, activated macrophages expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) to generate various inflammatory mediator molecules, such as nitric oxide (NO). The increase in iNOS and COX-2 levels, which are up-regulators of MMP-9 expression, was also confirmed. The biochemical events are involved in the downstream of activated MAPK signaling and translocation of NF-κ B transcription factor. The present results prove the immunomodulatory effect of MPT32 in the RAW 264.7 murine macrophage cells. it claims the possibility of a TB vaccination and drug candidate using MPT32, contributing to the prevention of TB.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Animais , Camundongos , Ciclo-Oxigenase 2/genética , Inflamação , Macrófagos , Metaloproteinase 9 da Matriz , NF-kappa B , Regulação para Cima , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia
8.
Microb Pathog ; 183: 106289, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567324

RESUMO

BACKGROUND: Host genetic single nucleotide polymorphisms can exert an influence susceptibility to tuberculosis infection. Previous investigations have demonstrated an association between the polymorphism in the ALOX5 gene and a range of diseases, encompassing not only noninfectious conditions like asthma, acute myocardial infarction, and cerebral infarction but also infections caused by various pathogens. However, the relationship between ALOX5 gene polymorphism and susceptibility to tuberculosis has received limited research attention. The ALOX5 gene encodes arachidonic acid 5-lipoxygenase(5-LO), which serves as the initiating catalyst in the generation of the inflammatory mediator leukotriene. Leukotrienes, products derived from the 5-LO pathway, are potent proinflammatory lipid mediators that assume a pivotal role in tuberculosis infections.Consequently, ALOX5 gene variants may be intricately associated with the pathogenesis of tuberculosis. In instances where the host exhibits immunocompromisation, infection with Mycobacterium tuberculosis can impact multiple systems. The involvement of multiple systems significantly augments the complexity of treatment and escalates patient mortality rates. Regrettably, the underlying mechanisms driving multisystem tuberculosis pathogenesis remain enigmatic, with clinicians paying scant attention to this aspect. Although the protein encoded by the ALOX5 gene represents a pivotal enzyme that catalyzes the metabolism of arachidonic acid into LXA4, and thereby plays a significant role in the inflammatory response during tuberculosis infection, studies investigating ALOX5 gene polymorphism and its association with susceptibility to multisystem tuberculosis in the Chinese Han population are exceptionally scarce. Therefore, the primary objective of this study is to comprehensively examine the correlation between ALOX5 gene polymorphisms and susceptibility to tuberculosis within the Chinese Han population, with particular emphasis on multisystemic tuberculosis. METHODS: A case‒control study design was employed, encompassing 382 individuals with pulmonary tuberculosis and 367 individuals with multisystemic tuberculosis as the case groups, along with 577 healthy controls.Whole blood DNA was extracted from all patients and healthy controls. Subsequently, three tag polymorphisms (rs2029253, rs7896431, rs2115819) within the ALOX5 gene were selectively identified and genotyped. RESULTS: After adjusting for age and sex, the presence of allele A at rs2029253 exhibited a pronounced association with an elevated risk of TB susceptibility when compared to the tuberculosis group and healthy control group. (ORa: 2.174, 95% CI: 1.827-2.587; Pa<0.001, respectively). Notably, the rs2029253 AG genotype and AA genotype displayed a significantly increased susceptibility to tuberculosis (ORa: 2.236, 95% CI: 1.769-2.825; Pa <0.001 and ORa: 4.577, 95% CI: 2.950-7.100; Pa <0.001, respectively) compared to the GG genotype. Moreover, in the analysis utilizing genetic models, rs2029253 also exhibited a markedly heightened susceptibility to tuberculosis in additive models, dominant models, and recessive models (Pa <0.001). Conversely, no significant association was observed between rs7896431, rs2115819, and tuberculosis. In the subgroup analysis, when comparing the pulmonary tuberculosis group with the healthy control group, we observed no significant disparities in the distribution frequencies of alleles, genotypes, and gene models (additive model, dominant model, and recessive model) for the three tag SNPs, with P-values were >0.05 after adjusting for age and sex. Additionally, we noted that the presence of allele A at rs2029253 was linked to an increased susceptibility to tuberculosis in the multisystemic tuberculosis group relative to the healthy control group (ORa: 2.292, 95% CI: 1.870-2.810; Pa<0.001). Similarly, the rs2029253 AG genotype, AA genotype, and gene models, including the additive model, dominant model, and recessive model, demonstrated a significantly elevated risk of tuberculosis susceptibility. CONCLUSIONS: The polymorphism in the ALOX5 gene is associated with susceptibility to multisystemic tuberculosis in the Chinese Han population.


Assuntos
População do Leste Asiático , Predisposição Genética para Doença , Tuberculose , Humanos , Araquidonato 5-Lipoxigenase/genética , Estudos de Casos e Controles , China , População do Leste Asiático/etnologia , População do Leste Asiático/genética , Frequência do Gene , Predisposição Genética para Doença/etnologia , Predisposição Genética para Doença/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Tuberculose/genética , Tuberculose/metabolismo , Tuberculose Pulmonar/genética
9.
Sci Rep ; 13(1): 11617, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464009

RESUMO

Tuberculosis (TB) is a prevalent disease causing an estimated 1.6 million deaths and 10.6 million new cases annually. Discriminating TB disease from differential diagnoses can be complex, particularly in the field. Increased levels of complement component C1q in serum have been identified as a specific and accessible biomarker for TB disease but the source of C1q in circulation has not been identified. Here, data and samples previously collected from human cohorts, a clinical trial and a non-human primate study were used to identify cells producing C1q in circulation. Cell subset frequencies were correlated with serum C1q levels and combined with single cell RNA sequencing and flow cytometry analyses. This identified monocytes as C1q producers in circulation, with a pronounced expression of C1q in classical and intermediate monocytes and variable expression in non-classical monocytes.


Assuntos
Monócitos , Tuberculose , Animais , Humanos , Monócitos/metabolismo , Complemento C1q/metabolismo , Tuberculose/diagnóstico , Tuberculose/metabolismo , Primatas , Biomarcadores/metabolismo
10.
PLoS Pathog ; 19(7): e1011460, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37405965

RESUMO

Recruiting large numbers of naïve lymphocytes to lymph nodes is critical for mounting an effective adaptive immune response. While most naïve lymphocytes utilize homing molecule L-selectin to enter lymph nodes, some circulating cells can traffic to the lung-draining mediastinal lymph node (mLN) through lymphatics via the intermediate organ, lung. However, whether this alternative trafficking mechanism operates in infection and contributes to T cell priming are unknown. We report that in pulmonary Mycobacterium tuberculosis-infected mice, homing of circulating lymphocytes to the mLN is significantly less efficient than to non-draining lymph node. CD62L blockade only partially reduced the homing of naïve T lymphocytes, consistent with L-selectin-independent routing of naïve lymphocytes to the site. We further demonstrated that lymphatic vessels in infected mLN expanded significantly and inhibiting lymphangiogenesis with a vascular endothelial growth factor receptor 3 kinase inhibitor reduced the recruitment of intravenously injected naïve lymphocytes to the mLN. Finally, mycobacterium-specific T cells entering via the L-selectin-independent route were readily activated in the mLN. Our study suggests that both L-selectin-dependent and -independent pathways contribute to naïve lymphocyte entry into mLN during M. tuberculosis infection and the latter pathway may represent an important mechanism for orchestrating host defence in the lungs.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Camundongos , Animais , Selectina L/metabolismo , Linfócitos T , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linfócitos , Pulmão , Linfonodos , Tuberculose/metabolismo
11.
Metabolomics ; 19(6): 55, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37284915

RESUMO

INTRODUCTION: Various studies have identified TB-induced metabolome variations. However, in most of these studies, a large degree of variation exists between individual patients. OBJECTIVES: To identify differential metabolites for TB, independent of patients' sex or HIV status. METHODS: Untargeted GCxGC/TOF-MS analyses were applied to the sputum of 31 TB + and 197 TB- individuals. Univariate statistics were used to identify metabolites which are significantly different between TB + and TB- individuals (a) irrespective of HIV status, and (b) with a HIV + status. Comparisons a and b were repeated for (i) all participants, (ii) males only and (iii) females only. RESULTS: Twenty-one compounds were significantly different between the TB + and TB- individuals within the female subgroup (11% lipids; 10% carbohydrates; 1% amino acids, 5% other and 73% unannotated), and 6 within the male subgroup (20% lipids; 40% carbohydrates; 6% amino acids, 7% other and 27% unannotated). For the HIV + patients (TB + vs. TB-), a total of 125 compounds were significant within the female subgroup (16% lipids; 8% carbohydrates; 12% amino acids, 6% organic acids, 8% other and 50% unannotated), and 44 within the male subgroup (17% lipids; 2% carbohydrates; 14% amino acids related, 8% organic acids, 9% other and 50% unannotated). Only one annotated compound, 1-oleoyl lysophosphaditic acid, was consistently identified as a differential metabolite for TB, irrespective of sex or HIV status. The potential clinical application of this compound should be evaluated further. CONCLUSIONS: Our findings highlight the importance of considering confounders in metabolomics studies in order to identify unambiguous disease biomarkers.


Assuntos
Infecções por HIV , Tuberculose Pulmonar , Tuberculose , Humanos , Masculino , Feminino , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/metabolismo , Escarro/metabolismo , Metabolômica , Tuberculose/metabolismo , Metaboloma , Aminas/metabolismo , Infecções por HIV/complicações , Aminoácidos/metabolismo , Carboidratos , Lipídeos
12.
Int Rev Cell Mol Biol ; 377: 87-119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37268352

RESUMO

The ability of Mycobacterium tuberculosis (M. tb) to hijack host mitochondria and control host immune signaling is the key to its successful infection. Infection of M. tb causes distinct changes in mitochondrial morphology, metabolism, disruption of innate signaling, and cell fate. The alterations in mitochondria are intricately linked to the immunometabolism of host immune cells such as macrophages, dendritic cells, and T cells. Different immune cells are tuned to diverse immunometabolic states that decide their immune response. These changes could be attributed to the several proteins targeted to host mitochondria by M. tb. Bioinformatic analyses and experimental evidence revealed the potential localization of secreted mycobacterial proteins in host mitochondria. Given the central role of mitochondria in the host metabolism, innate signaling, and cell fate, its manipulation by M. tb renders it susceptible to infection. Restoring mitochondrial health can override M. tb-mediated manipulation and thus clear infection. Several reviews are available on the role of different immune cells in tuberculosis infection and M. tb evasion of immune responses; in the present chapter, we discuss the mitochondrial functional alterations in the innate immune signaling of various immune cells driven by differential mitochondrial immunometabolism during M. tb infection and the role of M. tb proteins, which are directly targeted to the host mitochondria and compromise its innate signaling system. Further studies would help in uncovering the molecular mechanisms of M. tb-directed proteins in host mitochondria to conceptualize both host- directed and pathogen- directed interventions in TB disease management.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/metabolismo , Tuberculose/microbiologia , Mycobacterium tuberculosis/fisiologia , Macrófagos , Transdução de Sinais , Mitocôndrias/metabolismo
13.
PLoS Pathog ; 19(6): e1011088, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352334

RESUMO

Macrophages employ an array of pattern recognition receptors to detect and eliminate intracellular pathogens that access the cytosol. The cytosolic carbohydrate sensors Galectin-3, -8, and -9 (Gal-3, Gal-8, and Gal-9) recognize damaged pathogen-containing phagosomes, and Gal-3 and Gal-8 are reported to restrict bacterial growth via autophagy in cultured cells. However, the contribution of these galectins to host resistance during bacterial infection in vivo remains unclear. We found that Gal-9 binds directly to Mycobacterium tuberculosis (Mtb) and Salmonella enterica serovar Typhimurium (Stm) and localizes to Mtb in macrophages. To determine the combined contribution of membrane damage-sensing galectins to immunity, we generated Gal-3, -8, and -9 triple knockout (TKO) mice. Mtb infection of primary macrophages from TKO mice resulted in defective autophagic flux but normal bacterial replication. Surprisingly, these mice had no discernable defect in resistance to acute infection with Mtb, Stm or Listeria monocytogenes, and had only modest impairments in bacterial growth restriction and CD4 T cell activation during chronic Mtb infection. Collectively, these findings indicate that while Gal-3, -8, and -9 respond to an array of intracellular pathogens, together these membrane damage-sensing galectins play a limited role in host resistance to bacterial infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Galectina 3/genética , Tuberculose/metabolismo , Galectinas/genética , Galectinas/metabolismo , Macrófagos , Salmonella typhimurium , Camundongos Knockout
14.
Inflammation ; 46(5): 1749-1763, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37212951

RESUMO

As a lethal infectious disease, tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb). Its complex pathophysiological process limits the effectiveness of many clinical treatments. By regulating host cell death, Mtb manipulates macrophages, the first line of defense against invading pathogens, to evade host immunity and promote the spread of bacteria and intracellular inflammatory substances to neighboring cells, resulting in widespread chronic inflammation and persistent lung damage. Autophagy, a metabolic pathway by which cells protect themselves, has been shown to fight intracellular microorganisms, such as Mtb, and they also play a crucial role in regulating cell survival and death. Therefore, host-directed therapy (HDT) based on antimicrobial and anti-inflammatory interventions is a pivotal adjunct to current TB treatment, enhancing anti-TB efficacy. In the present study, we showed that a secondary plant metabolite, ursolic acid (UA), inhibited Mtb-induced pyroptosis and necroptosis of macrophages. In addition, UA induced macrophage autophagy and enhanced intracellular killing of Mtb. To investigate the underlying molecular mechanisms, we explored the signaling pathways associated with autophagy as well as cell death. The results showed that UA could synergistically inhibit the Akt/mTOR and TNF-α/TNFR1 signaling pathways and promote autophagy, thus achieving its regulatory effects on pyroptosis and necroptosis of macrophages. Collectively, UA could be a potential adjuvant drug for host-targeted anti-TB therapy, as it could effectively inhibit pyroptosis and necroptosis of macrophages and counteract the excessive inflammatory response caused by Mtb-infected macrophages via modulating the host immune response, potentially improving clinical outcomes.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Piroptose , Necroptose , Macrófagos/metabolismo , Tuberculose/metabolismo , Transdução de Sinais , Autofagia , Serina-Treonina Quinases TOR/metabolismo
15.
Int Immunopharmacol ; 120: 110291, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182451

RESUMO

OBJECTIVE: Tuberculosis is the leading killer among the chronic single-source infectious diseases. Mycobacterium tuberculosis can induce necrotic-dominant multiple modes of cell death in macrophages, which accelerates bacterium dissemination and expands tissue injury in host lungs. Mining drugs to counteract Mycobacterium tuberculosis-induced cell death would be beneficial to tuberculosis patients. METHODS: In this study, the protective drug was screened out from the FDA-approved drug library in Mycobacterium tuberculosis-infected macrophages with CCK-8 assay. The death mode regulated by the drug was identified using transcriptomic sequencing, cytomorphological observation, and in the experimental mouse Mycobacterium tuberculosis-infection model. The functional mechanism was explored using western blot, co-immunoprecipitation, and DARTS assay. The intracellular bacterial survival was detected using colony forming unit assays. RESULTS: Cisatracurium besylate was identified to be highly protective for the viability of macrophages during Mycobacterium tuberculosis infection via inhibiting necroptosis. Cisatracurium besylate prevented RIPK3 to be associated with the executive molecule MLKL for forming the necroptotic complex, resulting in the inhibition of MLKL phosphorylation and pore formation on cell membrane. However, Cisatracurium besylate did not interfere with the association between RIPK3 with its upstream kinase RIPK1 or ZBP1 but regulated RIPK3 autophosphorylation. Moreover, Cisatracurium besylate significantly inhibited the expansion of intracellular Mycobacterium tuberculosis both in vitro and in vivo, which also displayed a strong auxiliary bacteriostatic effect to support the therapeutic efficacy of isoniazid and rifampicin, the first-line anti-tubercular drugs. CONCLUSION: Cisatracurium besylate performs anti-Mycobacterium tuberculosis and anti-necroptotic roles, which potentiates its application to be an adjuvant drug for antituberculosis therapy to assist the battle against drug-resistant tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Apoptose , Mycobacterium tuberculosis/metabolismo , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Necroptose , Proteínas Quinases/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Antibacterianos/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Macrófagos/metabolismo
16.
Front Cell Infect Microbiol ; 13: 1067464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187471

RESUMO

Introduction: Tuberculosis (TB) is a major health problem characterized by an immuno-endocrine imbalance: elevated plasma levels of cortisol and pro- and anti-inflammatory mediators, as well as reduced levels of dehydroepiandrosterone. The etiological agent, Mycobacterium tuberculosis (Mtb), is captured by pulmonary macrophages (Mf), whose activation is necessary to cope with the control of Mtb, however, excessive activation of the inflammatory response also leads to tissue damage. Glucocorticoids (GC) are critical elements to counteract the immunoinflammatory reaction, and peroxisome proliferator-activated receptors (PPARs) are also involved in this regard. The primary forms of these receptors are PPARϒ, PPARα, and PPARß/δ, the former being the most involved in anti-inflammatory responses. In this work, we seek to gain some insight into the contribution of PPARϒ in immuno-endocrine-metabolic interactions by focusing on clinical studies in pulmonary TB patients and in vitro experiments on a Mf cell line. Methods and results: We found that TB patients, at the time of diagnosis, showed increased expression of the PPARϒ transcript in their peripheral blood mononuclear cells, positively associated with circulating cortisol and related to disease severity. Given this background, we investigated the expression of PPARϒ (RT-qPCR) in radiation-killed Mtb-stimulated human Mf. The Mtb stimulation of Mf derived from the human line THP1 significantly increased the expression of PPARϒ, while the activation of this receptor by a specific agonist decreased the expression of pro- and anti-inflammatory cytokines (IL-1ß and IL-10). As expected, the addition of GC to stimulated cultures reduced IL-1ß production, while cortisol treatment together with the PPARϒ agonist lowered the levels of this proinflammatory cytokine in stimulated cultures. The addition of RU486, a glucocorticoid receptor antagonist, only reversed the inhibition produced by the addition of GC. Conclusion: The current results provide a stimulating background for further analysis of the interconnection between PPARs and steroid hormones in the context of Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , PPAR gama/metabolismo , PPAR gama/farmacologia , Hidrocortisona/farmacologia , Hidrocortisona/metabolismo , Leucócitos Mononucleares/metabolismo , Tuberculose/metabolismo , Mycobacterium tuberculosis/metabolismo , Citocinas/metabolismo
17.
Tuberculosis (Edinb) ; 140: 102345, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37116235

RESUMO

CD11b+Gr-1low cells that are increased in the lungs of a Mycobacterium (M) tuberculosis-infection mouse model have the characteristics of monocytic (M)-myeloid-derived suppressor cells (MDSCs) and harbor M.tuberculosis. Interestingly, a high number of M-MDSCs have also been observed in skin lesions of patients with lepromatous leprosy. We hypothesized that CD11b+Gr-1low cells might be involved in the pathogenesis of leprosy, as they are in tuberculosis. In the current study, we investigated the issue of whether CD11b+Gr-1low cells accumulate in Mycobacterium (M) leprae-induced granulomas of the footpad skin of nude mice. Our results show that CD11b+Gr-1low cells began to accumulate in the 7-month-old M.leprae-induced granulomas and were replaced by other leukocytes, including CD11b+Gr-1high over time during M.leprae infections. CD11b + Gr-1low cells expressed the surface markers of M-MDSC, Ly6Chigh and Ly6Glow. In addition, CD11b+Gr-1low cells have the nuclei of a mononuclear cell type and expressed higher levels of arginase 1 (Arg1) and inducible NO synthetase (iNOS). Furthermore, they showed a higher infection rate by M.leprae. Taken together, our results indicate that the inoculation with M.leprae induced an accumulation of CD11b + Gr-1low at a relatively early stage, 7-month-old M.leprae-induced granulomas, and that CD11b+Gr-1low have the characteristics of M-MDSC and may act as a reservoir for M.leprae.


Assuntos
Mycobacterium tuberculosis , Células Supressoras Mieloides , Tuberculose , Camundongos , Animais , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Camundongos Nus , Mycobacterium tuberculosis/metabolismo , Tuberculose/metabolismo , Granuloma/induzido quimicamente , Granuloma/metabolismo , Antígeno CD11b/metabolismo
18.
Biotechnol Lett ; 45(5-6): 703-717, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37074553

RESUMO

OBJECTIVES: The only approved vaccine, Bacillus Calmette Guérin (BCG) used in global tuberculosis (TB) immunization programmes has been very effective in childhood TB but not in adult pulmonary and latent TB. Moreover, the emergence of multi-drug resistance-TB cases demands either to increase efficiency of BCG or replace it with the one with improved efficacy. RESULTS: A novel combination of two most effective secreted protein antigens specific for Mycobacterium tuberculosis (Mtb), ESAT-6 and MPT-64 (but not present in BCG strains) fused with a cholera toxin B subunit (CTB) and tagged with 6xHis was expressed for the first time in Escherichia coli as well as in transgenic cucumber plants developed using Agrobacterium tumefaciens-mediated transformation. The recombinant fusion protein (His6x.CTB-ESAT6-MPT64) expressed in E. coli was purified by a single-step affinity chromatography and used to produce polyclonal antibodies in rabbit. The transgenic cucumber lines were confirmed by polymerase chain reaction (PCR), Southern blot hybridization, reverse transcriptase PCR (RT-PCR), real-time PCR (qRT-PCR) and expression of recombinant fusion protein by western blot analysis and its quantification by enzyme-linked immunosorbent assay (ELISA). A maximum value of the fusion protein, 478 ng.g-1 (0.030% of the total soluble protein) was obtained in a transgenic cucumber line. Rabbit immunized orally showed a significant increase in serum IgG levels against the fusion protein as compared to the non-immunized rabbit. CONCLUSIONS: Stable expression of Mtb antigens with CTB in edible cucumber plants (whose fruits are eaten raw) in sufficient amount possibly would facilitate development of a safe, affordable and orally delivered self-adjuvanted, novel dual antigen based subunit vaccine against TB.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Animais , Coelhos , Vacinas contra a Tuberculose/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Vacina BCG , Proteínas de Bactérias/química , Antígenos de Bactérias , Escherichia coli/genética , Escherichia coli/metabolismo , Tuberculose/prevenção & controle , Tuberculose/metabolismo , Adjuvantes Imunológicos , Proteínas Recombinantes de Fusão/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Vacinas de Subunidades/genética
19.
Front Cell Infect Microbiol ; 13: 1102643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909724

RESUMO

Tuberculosis (TB) is an infectious disease caused by the bacteria of the Mycobaterium tuberculosis (Mtb) complex. The modulation of the lipid metabolism has been implicated in the immune response regulation, including the formation of lipid droplets (LD)s, LD-phagosome association and eicosanoid synthesis. Mtb, M. bovis BCG and other pathogenic mycobacteria, as well as wall components, such as LAM, can induce LDs formation in a mechanism involving surface receptors, for instance TLRs, CD36, CD14, CD11b/CD18 and others. In addition, the activation of the lipid-activated nuclear receptor PPARγ is involved in the mechanisms of LD biogenesis, as well as in the modulation of the synthesis of lipid mediators. In infected cells, LDs are sites of compartmentalized prostaglandin E2 synthesis involved in macrophage deactivation, bacterial replication and regulation of the host cytokine profile. LDs also have a function in vesicle traffic during infection. Rab7 and RILP, but not Rab5, are located on LDs of infected macrophages, suggesting that LDs and phagosomes could exchange essential proteins for phagosomal maturation, interfering in mycobacterial survival. The pharmacological inhibition of LDs biogenesis affects the bacterial replication and the synthesis of lipid mediators and cytokines, suggesting that LDs may be new targets for antimicrobial therapies. However, it is still controversial if the accumulation of LDs favors the mycobacterial survival acting as an escape mechanism, or promotes the host resistance to infection. Thus, in this mini-review we discuss recent advances in understanding the important role of LDs in the course of infections and the implications for the pathophysiology of mycobacteriosis.


Assuntos
Gotículas Lipídicas , Tuberculose , Humanos , Gotículas Lipídicas/metabolismo , Tuberculose/metabolismo , Macrófagos/microbiologia , Fagossomos/metabolismo , Metabolismo dos Lipídeos , Lipídeos
20.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919697

RESUMO

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects primarily macrophages, causing them to differentiate into lipid-laden foamy macrophages that are a primary source of tissue destruction in patients with TB. In this issue of the JCI, Bedard et al. demonstrate that 1-tuberculosinyladenosine, a virulence factor produced by M. tuberculosis, caused lysosomal dysfunction associated with lipid storage in the phagolysosome of macrophages in a manner that mimicked lysosomal storage diseases. This work sheds light on how M. tuberculosis manipulates host lipid metabolism for its survival and opens avenues toward host-directed therapy against TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Macrófagos/metabolismo , Tuberculose/metabolismo , Lisossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...